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Visceral pain: gut microbiota, a new hope?
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Abstract

Background: Visceral pain is a complex and heterogeneous disorder, which can range from the mild discomfort of
indigestion to the agonizing pain of renal colic. Regulation of visceral pain involves the spinal cord as well as higher
order brain structures. Recent findings have linked the microbiota to gastrointestinal disorders characterized by
abdominal pain suggesting the ability of microbes to modulate visceral hypersensitivity and nociception to pain.

Main body: In this review we describe the neuroanatomical basis of visceral pain signaling and the existing
evidence of its manipulation exerted by the gut microbiota. We included an updated overview of the potential
therapeutic effects of dietary intervention, specifically probiotics and prebiotics, in alleviating hypersensitivity to
visceral pain stimuli.

Conclusions: The gut microbiota dramatically impacts normal visceral pain sensation and affects the mechanisms
mediating visceral nociception. Furthermore, manipulation of the gut microbiota using prebiotics and probiotics
plays a potential role in the regulation of visceral pain disorders.
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Background
The increasing burden of visceral pain disorders has gen-
erated a growing interest by researchers and clinicians in
studying the origins of pain from internal organs. Visceral
pain is a complex and heterogeneous disorder which can
range from the mild discomfort of indigestion to the agon-
izing pain of renal colic, typically disproportionately affect-
ing more women than men [5, 10]. The most prevalent
forms of visceral pain are categorized as functional gastro-
intestinal disorders (FGID) such as irritable bowel syn-
drome (IBS), which exceeds US$ 40 billion in medical
costs and affects an estimated 10–15% of the US and
European populations [62, 71]. Visceral pain disorders
exert a tremendous pressure on the health care system
and are associated with psychological distress, sleep disor-
ders and sexual dysfunction, negatively impacting overall
patient quality of life [35]. Moreover, both ageing and gen-
der affect the progression of visceral pathology and pain,
with IBS reported twice as frequently in women than in
men [7].
The mechanisms involved in the perception of gastro-

intestinal pain and discomfort are complex. Stretch, in-
flammation, ischemia, pH, bacterial products, immune

mediators, and neurotransmitters have all been associ-
ated with visceral pain [67]. Nociceptors, expressing
transient receptor potential (TRP) at the nerve termina-
tions, sense painful stimuli and project signals onto
spinal nociceptive neurons located in the lateral neck of
the dorsal horn of the spinal cord, which convey infor-
mation to supraspinal centers (Fig. 1). Here, the signal
reaches several brain areas such as thalamus, hypothal-
amus, limbic system and cortex, which in concert code
the afferent information and generate an efferent signal
back to the periphery [9]. Thus, the descending path-
ways modulate neuronal activity exerting either an
inhibitory or a facilitatory effect on the sensation of pain.
However, repeated or chronic nociceptors’ activation,
due to chronic release of inflammatory mediators and
pain signals following tissue injury, can lead to
sensitization of the receptors and unpredictable bouts of
visceral pain [32, 76]. For instance, substance P, sero-
tonin, acetylcholine, prostaglandin 2, histamine, and
cytokines are some of the mediators thought to play a
role in the regulation of pain stimuli [76]. As alterations
in the perception and maintenance of this type of pain
involves multiple factors, making it challenging and
often unsatisfactory in the choice and the development
of adequate treatment options.* Correspondence: mpusceddu@ucdavis.edu; mgareau@ucdavis.edu
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The microbiota has emerged as a novel target for the
treatment of visceral pain. A correlation between visceral
pain disorders, such as IBS, and microbial dysbiosis has
been demonstrated in patients [19, 21]. Further evidence
supports the role of bacterial, viral, and parasitic infec-
tions in triggering IBS symptoms. A recent systematic
review and meta-analysis of 45 studies, comprising
21,421 individuals with enteritis, showed that the devel-
opment of IBS was increased more than 10% up to at
least 12 months post-infection. Moreover, the risk of IBS
was found to be 4-fold higher than in individuals who
did not have infectious enteritis, although heterogeneity
among the studies were found. The increased risk of
developing IBS was seen predominantly in women, as
well as in individuals treated with antibiotics during the
enteritis. [42]. Of interest, the improvement of visceral
hypersensitivity through the use of certain beneficial
probiotics and prebiotics has been recently proposed
[26]. Moreover, significant enthusiasm has been gener-
ated following the potential benefits exerted by fecal

material transplantation having been observed in
patients with visceral pain [37, 59]. Therefore, the role of
the intestinal microbiota has emerged as an essential
player in the development of future therapeutic ap-
proaches for visceral pain.

Gut microbiota development
The gut microbiome comprises more than 1000 species
and 7000 strains dominated mainly by bacteria, but also
includes viruses, protozoa, archaea and fungi [46]. This
ecosystem occupies different niches in the human body,
interacting with most, if not all, organs of the host
throughout the lifespan. As first proposed by Tissier
[73], colonization of the gut was assumed to commence
at birth, making the human placenta an excellent sterile
compartment for the growing offspring. However, the
detection of a shared microbial signature between the
placenta, amniotic fluid, and meconium suggests a direct
maternal to infant transfer of microbiomes that starts in
utero [43]. This maternal imprinting of the infant

Fig. 1 Gut microbiota-host interaction. Schematic representing the different ways of interaction between the microbiota and host. Painful stimuli
sensed by nociceptors expressed at the nerve terminations project signals onto spinal nociceptive neurons located in the lateral neck of the dorsal horn of
the spinal cord, which convey information to supraspinal centers. Here, the signal reaches several brain areas such as the thalamus, hypothalamus, limbic
system, and cortex, which in concert code the afferent information and generate an efferent signal back to the periphery. The microbiota, which resides in
the lumen of the gastrointestinal tract, can influence several factors involved in pain perception and its signaling such as the vagus
nerve, cytokine production, corticosterone secretion, short chain fatty acids (SCFAs), and microbial metabolite release
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microbiota is then strengthened by breastfeeding during
the first weeks of life giving shape to a much more com-
plex microbiota in the offspring composed mostly by the
genera Lactobacillus, Staphylococcus, Enterococcus, and
Bifidobacterium [52]. The switch from breast milk to the
introduction of solid food makes the microbiome grad-
ually more complex, culminating in a more mature gut
microbiota by 3 years of age [57]. Starting in the early
stages of life, the microbiome establishes a long evolu-
tionary symbiosis with the host, which influences essen-
tially all organs, systems, as well as their functionality.
For instance, the formation of a more mature microbiota
early in life coincides with the development of the im-
mune system, suggesting the microbiota is responsible
for the priming of the immune system [4, 31].
From the gut, the microbiota can communicate with

the central nervous system (CNS) forming a complex
crosstalk between the gut, its microbiome, and the brain
known as the microbiota-gut-brain (MGB) axis [17].
This bidirectional communication between the gut
microbiota and the brain is believed to participate in the
regulation of gastrointestinal homeostasis and affect
CNS function including mood, cognition, and pain per-
ception. The mechanisms by which the gut microbiota
interacts with the host will be discussed thoroughly in
this review article.

Gut microbiota and its interaction with the host
The gastrointestinal (GI) tract is the most heavily colo-
nized organ of the human body, which hosts an increas-
ing microbial concentration from 101 to 103 cells up to
1011–1012 cells per gram of fecal contents in the stom-
ach and in the colon, respectively [36]. Here the micro-
biota is recognized by the host by specific receptors
expressed on different cells of the innate immune
system, such as macrophages, neutrophils, NK cells,
dendritic cells and intestinal epithelial cells. Specifically,
microbe- or pathogen-associated molecular patterns
(MAMPs or PAMPs), such as lipopolysaccharide (LPS)
and peptidoglycans (PGN), are sensed by pattern recog-
nition receptors (PRRs), including Toll-Like receptors
(TLRs) and NOD-like receptors which are expressed on
the host cell surface or in the cytosolic compartment of
numerous cell types including immune cells [51]. The
activation of PRRs triggers an enzymatic cascade leading
to the synthesis and release of proinflammatory cyto-
kines. In a chronically inflamed host, the integrity of the
intestinal mucosal barrier is impaired facilitating bacter-
ial infiltration across the gut and the migration of
diverse bacterial antigens from the underlying lamina
propria systemically via the blood. Therefore, following
inflammation, a combination of cytokines and bacterial
products, such as peptidoglycans and LPS, circulate into
the blood, reaching several distant organs and systems

including the CNS and the blood brain barrier (BBB).
Whether cytokines can cross the BBB or not still needs
to be clarified. However, evidence reveals that cytokines
can influence brain areas and their functionality, sug-
gesting a correlation exists between brain cytokines
levels and psychiatric symptoms (including perception of
pain), known as cytokine-induced sickness behavior [78].
Moreover, the heightened inflammatory tone induced by
a leaky gut is also responsible for the activation of the
hypothalamic-pituitary-adrenal (HPA) axis and conse-
quently the release of corticosterone, the most potent
stress hormone. This highlights the importance of the
microbiota in influencing the neuroendocrine system
[15]. Recent evidence indicates PGN can translocate into
the brain and be sensed by PRRs within the CNS. [3].
Moreover, microglial control of astrocytes and CNS in-
flammation can be modulated by metabolites of dietary
tryptophan produced by commensal bacteria, suggesting
a novel signaling pathway that mediates the communica-
tion between the gut microbiota and the brain [65].
Other microbial products, specifically short chain fatty
acids (SCFAs), can enter the blood and exert an effect
centrally, influencing memory and cognition through
epigenetic mechanisms [24, 45]. Furthermore, the micro-
biota is believed to influence function and metabolism of
enteroendocrine cells, inducing the expression of several
peptides, such as glucagon-like peptides (GLP) and pep-
tide YY (PYY), which are known to control energy
homeostasis, glucose metabolism, gut barrier function,
and metabolic inflammation [8]. The microbiota is also
capable of regulating the synthesis and release of several
neurotransmitters in the GI tract. Microbial
dependent-serotonin (5-HT) biosynthesis has emerged
as a critical player, due to its implication in colonic func-
tion and GI disorders [34, 77]. For instance, lower mu-
cosal 5-HT content, tryptophan hydroxylase (TPH) 1,
and serotonin reuptake transporter (SERT) expression
levels have been reported in some studies involving IBS
patients [13, 25, 38]. Furthermore, exposure to selective
serotonin reuptake inhibitor (SSRIs) in some cases have
been shown to ameliorate IBS symptoms, such as en-
hanced orocecal transit and increased colonic motility
[11, 72]. Moreover, the antagonism of specific 5-HT re-
ceptors abundantly expressed in the gut, such as 5-HT3,

has been shown to reduce visceral pain, slow colonic
transit, and enhance small intestinal absorption [6].
Despite this evidence, the role of 5-HT signaling in the
gut remains confusing and controversial, therefore fur-
ther research is warranted [48]. In addition to 5-HT,
the neurotransmitters γ-aminobutyric acid (GABA),
dopamine (DA) and acetylcholine (ACh) are also syn-
thesized in the lumen of the intestine by the microbiota
and these neurotransmitters are believed to communi-
cate with the brain via the vagus nerve [47]. It is also
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believed that the microbiota communicates with the
CNS through the enteric nervous system (ENS) via
vagal parasympathetic and sympathetic tracts [55]. A
schematic representing the pathways of interaction be-
tween the microbiota and host is shown in Fig. 1.

Visceral pain: Microbiota & Preclinical Studies
In recent years, preclinical studies have shed light on the
role played by the microbiota in visceral pain. Studies
using germ free mice (GF; mice raised without any ex-
posure to microorganisms), have shown the commensal
microbiota is necessary for development of an adequate
pain sensitivity [2], which is blunted in response to sev-
eral stimuli including bacterial LPS and interleukin
(IL)-1β in GF mice [12]. Reestablishment of a normal
microbiota through microbial transfer from conventional
to GF mice has demonstrated that the microbiota is ne-
cessary for the restoration of normal excitability of gut
sensory neurons [49]. Of note, fecal transplant from IBS
patients reproduced certain features characteristics of
IBS in GF mice, including hypersensitivity to colorectal
distension, [14]. In another study, GF rats inoculated
with the microbiota from patients with IBS developed
abnormal gut fermentation mostly characterized by in-
creased H2 excretion and sulfide production, [14] which
have been reported in IBS [41, 69]. GF rodents represent
a valuable tool for the investigation of visceral pain and
related pathologies arising from intestinal dysbiosis.

Probiotics in animal models
As an alternative to a GF state, chronic antibiotic admin-
istration is also used as a model to deplete the gut

microbiota. Antibiotics can alter the innate mucosal im-
mune system and attenuate visceral pain-related re-
sponses provoked by intracolonic capsaicin and
intraperitoneal acetic acid administration in mice [1].
However, exposure to antibiotics during early life can
also increase visceral sensitivity in adult rats, suggesting
that alterations of the microbiota induced in specific
time windows of life are crucial to the development of a
sensitivity to pain [53].
Probiotics, bacteria that can confer beneficial effects

onto the host following consumptionhave demonstrated
improvements in animal models of visceral hypersensi-
tivity. Despite these highly interesting findings, the
mechanisms involved in mediating these benefits remain
unkown [29] (Table 1). Live luminal administration of
Lactobacillus reuteri (DSM 17938) and its conditioned
medium dose-dependently reduced jejunal spinal nerve
firing evoked by distension or capsaicin, with 80% of this
response blocked by a specific transient receptor poten-
tial cation channel subfamily V member 1 (TRPV1)
channel antagonist or in TRPV1 knockout mice [58].
Lactobacillus acidophilus-mediated analgesic effects
function in the gut similarly to the effects of morphine,
inducing upregulation of both opioid and cannabinoid
receptors in rodents [66]. Lactobacillus paracasei ad-
ministration blunted antibiotic-induced visceral sensitiv-
ity to colorectal distension (CRD) and increased
substance P levels in the mice colon [74]. Interestingly,
exposure to chronic stress has been used as a valuable
rodent model of IBS and visceral sensitivity, suggesting
the MGB axis serves as an important regulator of vis-
ceral pain. For instance, the neonatal maternal

Table 1 Effects of prebiotics and probiotics in preclinical studies

Animals Treatment Length of
treatment

Outcomes References

Adult male Swiss
Webster

Live luminal Lactobacillus
reuteri (DSM 17938)

9 days DSM ↓ capsaicin-evoked (1) firing of spinal nerve action potentials and (2)
Ca2+ increase in DRG neurons.

[58]

Sprague Dawley
rats

Lactobacillus acidophilus 15 days L. acidophilus ↑MOR1 and CB2 expression in intestinal epithelial cells
restoring normal perception of visceral pain.

[66]

Female NIH Swiss
mice and Balb/c
mice

Lactobacillus paracasei
(NCC2461)

10 days L. paracasei ↓antibiotic-induced CRD hypersensitivity and SP
immunolabelling in the myenteric plexus.

[74]

Sprague Dawley
rats

Lactobacillus rhamnosus
and Lactobacillus
helveticus

15 days Probiotics ↓ MS-induced CRD hypersensitivity, plasma CORT levels and
short-circuit current in the gut.

[27]

Sprague Dawley
rats

Lactobacillus paracasei 15 days L. paracasei ↓ MS-induced CRD hypersensitivity. [23]

Wistar rats VSL#3 60 days VSL#3 reversed MS-induced CRD hypersensitivity and alterations of i.e.
TPH1, CCL2, NOS3, NTRK1, IL-10, TRPV4, gene expression levels.

[18]

C57BL/6 mice Lactobacillus rhamnosus
and Lactobacillus
helveticus

15 days Probiotics prevented c. rodentium-induced epithelial cell hyperplasia and
reduction in cell proliferation as well as transcription of IL-10 and FOXP3.

[64]

Abbreviations: MOR1 Opioid Receptor Mu, CB2 Cannabinoid Receptor, CRD colorectal distension, MS maternal separation, CORT corticosterone, TPH1 Tryptophan
hydroxylase, CCL2 C-C Motif Chemokine Ligand, NOS3 nitric oxide synthase, NTRK1 Neurotrophic Receptor Tyrosine Kinase, IL-10 interleukin, TRPV4 Transient
Receptor Potential Cation Channel Subfamily V Member 4, FOXP3 Forkhead Box P3
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separation (MS) paradigm, which consists of separating
murine pups from their mothers for 3 h per day for at
least 10 days, induces several alterations related to vis-
ceral pain such as hypersensitivity to CRD, increased gut
permeability, activation of the immune system, increased
hypothalamic pituitary adrenal (HPA) axis activation and
altered intestinal microbial composition [28, 54, 60, 70].
In this regard, a specific probiotics cocktail made of L.
helveticus and L. rhamnosus reduced both macromol-
ecular and paracellular permeability in MS [27]. The
same probiotics treatment also ameliorated the
MS-induced gut functional abnormalities and bacterial
adhesion/penetration into the mucosa and blunted the
HPA axis response [27]. L. paracasei and VSL#3, (com-
posed of B. longum, B. infantis, B. breve, L. acidophilus,
L. casei, L. bulgaricus, L. plantarum, and Streptococcus
salivarius), were also able to reverse MS-induced hyper-
algesia and allodynia during CRD and restored normal
gut permeability [18, 23]. Moreover, VSL#3 was found to
modulate the serotonergic system, specifically TPH1 ex-
pression levels, which is typically altered in IBS. VSL#3
was also shown to reduce gut permeability through up-
regulation of specific tight junction proteins (occluding,
ZO-1) in a rat model of IBS induced by chronic intraco-
lonic instillation of 4% acetic acid [16]. Similarly, both L.
helveticus and L. rhamnosus administration were shown
to restore the function of the intestinal barrier and in-
creased the levels of tight junction proteins in two differ-
ent animal models of colitis [44, 64].

Visceral pain: Microbiota & Clinical Studies
Intestinal dysbiosis has also been reported in individ-
uals suffering from visceral pain, including IBS patients,
making the microbiota itself a novel target for treat-
ment [29, 61]. A reduction in the levels of Bifidobacter-
ium, Lactobacillus [68] as well as alterations in the
Firmicutes:Bacteroidetes ratio, which represent the
most abundant phylum bacteria found within the

human gut microbiome [63], have been identified in
IBS patients. VSL#3 treatment has been shown to be ef-
fective in five small different randomized control trials
(RCT) in IBS patients that fulfilled the Rome II or
Rome III criteria. At least 6 weeks of VSL#3 treatment
were necessary to observe improvements in symptom-
atology, such as reduced abdominal pain/discomfort, or
improved abdominal bloating/gassiness, when com-
pared to placebo [33, 39, 40, 50, 63]. A larger study in-
volving 362 women with IBS demonstrated efficacy of
B. infantis in reducing pain, bloating and improving
bowel movements after 4 weeks of treatment compared
to placebo [75]. Similarly, L. rhamnosus [30] and L.
plantarum [20] both showed amelioration in abdominal
pain and bloating together with reduced visceral pain in
two different large RCT studies in IBS patients. Escheri-
chia coli DSM 17252 has also showed improvements in
298 IBS patients compared to placebo. After 8 weeks of
treatment, both abdominal pain and general pain scores
were significantly ameliorated in the IBS group pro-
vided with probiotics [22]. One study showed beneficial
effects of the prebiotic fructoligosaccharides (FOS) in
patients affected by minor functional bowel disorders
(FBD; Rome II criteria). After 6 weeks of treatment, 105
FBD patients showed reduced incidence and intensity
of gastrointestinal symptoms over placebo [56]. Taken
together, these studies highlight the potential for bene-
ficial probiotics for the treatment of visceral pain.
The paucity of information coming from the accu-

mulated clinical evidence to date limits our under-
standing on the efficacy of both prebiotics and
probiotics in visceral pain (Table 2). Limitations are
mostly due to inconsistencies within the studies, types
of probiotics provided, length of the treatment and
different types of pain disorders being treated. None-
theless, the data to date suggests potential benefits
exerted by specific probiotics and prebiotics in pa-
tients with visceral pain.

Table 2 Effects of prebiotics and probiotics in clinical studies

Participants Treatment Length of
Trial

Outcomes References

50 IBS children, Rome II criteria. Lactobacillus GG vs
placebo.

6 weeks LGG ↓ incidence abdominal distention. [50]

48 IBS patients, Rome II criteria. VSL#3 vs placebo. 4 and
8 weeks

↓ flatulence and colonic transit. [39]

30 Rome III FC patients; 30
controls.

VSL#3 vs placebo. 2 weeks VSL#3 ↑complete spontaneous bowel movements. [40]

59 IBS children. VSL#3 vs placebo. 6 weeks VSL#3 ↓ abdominal pain/discomfort, and bloating/gassiness. [33]

104 children diagnosed with
FAPD, IBS or FD.

Lactobacillus GG vs
placebo.

4 weeks. LGG treatment moderately improved abdominal pain. [30]

105 FBD patients. sc-FOS vs placebo. 6 weeks sc-FOS ↓ intensity of digestive disorder symptoms ↑ quality of life, ↑
discomfort scores.

[56]

Abbreviations: FBD Functional Bowel Disorders, FAPD Functional Abdominal Pain Disorders, FD Functional Dyspepsia, sc-FOS short-chain Fructo-oligosaccharides
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Conclusions
Increasing evidence strongly indicates that the gut
microbiota plays a pivotal role in the regulation of vis-
ceral pain. Its association with autonomic and emotional
reactions and visceral function makes the gut microbiota
an appealing target for novel pharmacological strategies
against visceral pain in FGIDs, including IBS. Despite
this, whether the microbiota is driving the abnormalities
found in visceral pain and related pathologies remains to
be resolved. Moreover, our knowledge on the crosstalk
between the gut and brain and the mechanisms by
which the microbiota could alleviate visceral pain is still
in its early infancy. The provocative preclinical evidence
on the influence of the microbiota in the regulation of
visceral pain seems promising but still need to be con-
firmed clinically. Even though growing clinical research
has found alleviation in the symptomatology of visceral
pain after microbial manipulation with both prebiotics
and probiotics, many lack power. Further studies with
greater numbers of patients showing consistent results
are warranted. Finally, whether fecal transplantation
could be considered as a viable therapeutic option to
modify the microbiota for benefit in visceral pain still
needs to be confirmed.
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